

Discovery and Characterization of BMN673 (Talazoparib), a Novel, Highly Potent, and Orally Efficacious Poly(ADP-ribose) Polymerase-1,2 Inhibitor, as an Anticancer Agent

Wang, B.; Chu, D.; Feng, Y.; Shen, Y.; Aoyagi-Scharber, M.; Post, L. E. *J. Med. Chem.* **2016**, *59*, 335-357

Tanja Krainz Current Literature July 9th, 2016

(8S,9R)-47 (Talazoparib, BMN 673)

IC50 (PARP1): 0.57 nM GI50 (TMZ): 4 nM EC50 (BRCA1): 0.3 nM EC50 (BRCA2): 5.0 nM

BioMarin Pharmaceuticals

BioMarin is a global biotechnology company that develops and commercializes innovative therapies for people with serious and life-threatening rare disorders (established in 1997)

Products on the Market:

BioMarin's Current Pipeline

What is PARP?

Poly (ADP-ribose) polymerase (PARP) is a family of proteins involved in a number of cellular processes involving mainly **DNA repair** and **programmed cell death**.

PARP Activation

PARP Inhibitors Mode of Action

2 Mechanisms of Action

- PARP1 inhibited cells accumulate unrepaired SSBs → DSBs when encountered by the replication machinery. If HR repair is disabled, cells reroute to alternative low fidelity DNA repair pathways, thus hastening genomic instability and cell death.
- 2. PARP Inhibitors compete with NAD+ at the catalytic site of PARPs inhibiting their enzymatic function and preventing synthesis of PAR----→ "PARP1-trapping model"

Current PARP Inhibitors

I. PARP Inhibitors in Clinical Trials

HO POH O OH HN-

Niraparib (formerly MK4827) Tesaro

Rucaparib (AG-014699) Clovis Oncology

Astra Zeneca
Phase 3 in adjuvant and advanced germline
BRCAm breast cancer

CEP9722 Teva Pharma

Veliparib (ABT888) Abbvie

* Phase 3 in neoadjuvant in combination with carboplatin and standard therapy in triple negative breast cancer

*Phase 2/3 in advances setting as combination therapy in germline BRCAm breast cancer

II. OTHERS

$$\begin{array}{c|c} O & NH_2 \\ & &$$

3-Aminobenzamide (3-AB)

Iniparib (BSI-201)

7/9/2016

Discovery of the Tetrahydropyridophthalazinone Scaffold

SAR study

A = 4-PhCH₂NMe₂, **B** = Ph, **C** = 4-Ph-F, **D** = 3-PhCH₂NMe₂, **E** = 4-PhCI, **G** = 4-PhCF₃, **J** = 1-Me-imidazol-2-yl, **K** = 4-PhCH(OMe)₂, **L** = i-Pr, **M** = 1-Me-1,2,4-triazol-5-yl, **N** = 4-Me-1,2,4-triazol-3-yl, **O** = 4-Ph-iPr, **P** = 4-PhMe₁, **Q** = thiazol-2-yl, **S** = 3-PhCH(OEt)₂, **T** = 4-PhCH(OEt)₂

Synthetic Route to Talazoparib

10

In Vitro Activity and Metabolic Stability

$$R_3$$
 R_3
 R_4
 R_1

PARP1 activity
Cellular PARylation assay → inhibition of intracellular PARP1/2

TMZ chemosensitization → ability to potentiate cell killing by temozolomide Capan-1 cytotoxicity assay → single agent anticancer activity in BRCA2 mutation

R1	R2	R3	PARP1-enzyme IC ₅₀ (nM)	Cellular PAR Inhibition EC ₅₀ (nM)	TMZ chemosensitization GI ₅₀ (uM)	Capan-1 (BRCA2 mutant) EC ₅₀ (uM)	rLM t _{1/2} (min)
Н	Н	Н	6.1	58.4	324	2.97	
Н	4-CH2NMe2	Н	5.85		112		6
4-CH2NMe2	4-CH2NMe2	Н	3.89	18.6	63	0.979	>120
4-CH2NMe2	4-methyl	Н	1.95	10.8	123	0.514	35
4-CH2NMe2	Н	F	3.29	8.48	46	0.146	5
4-CH2NMe2	4-F	F	2.63	6.1	94	0.134	82
Rucaparib			1.98	4.74	144	0.609	

In Vitro Activity and Metabolic Stability

$$R_3$$
 R_3
 R_4
 R_4
 R_4

R1	R2	R3	PARP1-enzyme IC ₅₀ (nM)	Cellular PAR Inhibition EC ₅₀ (nM)	TMZ chemosensitization GI ₅₀ (uM)	Capan-1 (BRCA2 mutant) EC ₅₀ (uM)	rLM t _{1/2} (min)
Phenyl	1-Me- imidazol-2-yl	Н	2.35	16.9	97	0.36	89
4-fluorophenyl	1-Me- imidazol-2-yl	Н	2.08	19.7	75.5	0.418	>120
phenyl	1-Me- imidazol-2-yl	F	2.14	18.1	36.3	0.108	103
phenyl	1-Me-1,2,4- triazol-5-yl	Н	2.4	149	>400	0.170	414
4-fluorophenyl	1-Me-1,2,4- triazol-5-yl	Н	2.29	6.94	44	0.071	>120
4-fluorophenyl	1-Me-1,2,4- triazol-5-yl	F	2.14	5.48	19	0.008	359
Rucaparib			1.98	4.74	144	0.609	

In Vitro Activity Comparison with other PARP Inhibitors

Compound	PARP1 enzyme IC ₅₀ (nM)	Cellular PAR inhibition EC ₅₀ (nM)	TMZ chemosensitizati on GI ₅₀ (nM)	MX-1 cell (BRCA1 mutant) EC ₅₀ (nM)	Capan-1 cell (BRCA2 mutant) EC ₅₀ (nM)	MRC-5 (normal) EC ₅₀ (uM)
Veliparib	4.73	5.94	6203	ND	>10000	>10
Rucaparib	1.98	4.69	144	5.3	609	8.53
Olaparib	1.94	3.57	237	23.2	259	5.83
Nicaparib	8.05	ND	ND	ND	650	ND
Talazoparib (8S, 9R)-47	0.57	2.51	4	0.3	5	0.31
Talazoparib (8S, 9R)-47	144	864	1807	Nd	1135	nd

PARP catalytic inhibition vs. PARP trapping

Trapping: Induction of allosteric conformational change in the enzyme, therefore stabilizing its association with damaged DNA → prevents DNA replication and transcription, killing cancer cells more effectively than catalytic inhibition alone.

In Vivo Antitumor Effect Single Agent Use

- Talazoparib as a single agent in immunodeficient mice bearing established subcutaneous
 MX-1 tumor xenografts
- Once daily oral administration of BMN673 for 28 consecutive days

> BMN673 well tolerated with no animal lethality or significant weight loss after treatment

Split-dosing Treatment

0.33 mg/kg/dose once daily vs. 0.165 mg/kg/dose twice daily for 28 days

- Tumor growth in the QD cohort eventually re-established after cessation of drug treatment
- Continuous suppression of PARP1/2 is required for a sustained antitumor effect

Anti-Tumor Effect in Combination with Cisplatin

- Ability to potentiate DNA damaging anticancer agents
- MX-1 tumor bearing mice treated with 8 consecutive daily oral doses of BMN673, olaparib or vehicle;
- Cisplatin was dosed intraperitoneally at 6mg/kg on day 3

Conclusions

- Unique and extensive binding interactions with PARP1 and PARP2 proteins.
- Excellent in vitro anti-tumor activity as a single agent in BRCA1/2 deficient cells.
- Mechanism of action via PARP trapping
- Excellent pharmacokinetic properties
- Excellent in vivo anticancer efficacy as a single agent and as a chemosensitization agent in BRCA1-deficient MX-1 breast cancer xenograft model